Data Representation

Binary


Devices have two states 1 or 0.

Denary

Binary

0

0

1

001

2

010

3

011

4

100

5

101

6

110

7

111

8

1000

9

1001

10

1010

11

1011

12

1100

Binary is in Base 2.
For example 4 would be show as:

64

32

16

8

4

2

1

0

0

0

0

1

0

0

 

Teaching Ideas.
Activity.
Give 5 people a card with the numbers 1,2,4,8,16 on. Say a set of numbers and get the students to work out which numbers are needed to make that number.
Computer Science Unplugged.
JohnPhillipsJones.com
CD and Music- Reward good behaviour and working with choosing a winner each class that can bring in a CD to play next lesson.
Maths-aids.com
Little man computers

Maths.
101  = 10
102  = 10 x 10 = 100
103 = 10 x 10 x 10 = 1000
104 = 10 x 10 x 10 x 10 = 10000
Binary

25

24

23

22

21

20

32

16

8

4

2

1

Base 8

83

82

81

80

512

64

8

1

 

Other.

Denary

Binary

ASCII - American Standard Code for Characters.

Hexadecimal

Bytes and Bits:

8 Bits = 1 Byte
4 Bits = 1 Nibble
Byte = 8 Bits
Kilobyte = 1024 Bits
Terabyte.
Petabyte.

Assembly Language consisted of:

ADD

SUB

MUL

DIV

PRNT

Denary to Binary

Denary

1024

512

256

128

64

32

16

8

4

2

1

29

0

0

0

0

0

0

1

1

1

0

1

53

0

0

0

0

0

1

1

0

1

0

1

74

0

0

0

0

1

0

0

1

0

1

0

555

0

1

0

0

0

1

0

1

0

1

1

752

0

1

0

1

1

1

1

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Octal system Base 8.

83

82

81

80

512

64

8

1

 

 

 

 

4

0

7

3

 

Hexadecimal Base 16

Denary

Hexadecimal

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A

11

B

12

C

13

D

14

E

15

F

 

 

 

 

163

162

161

160

4096

256

16

1

 

Binary Addition


0 + 0 = 0 carry 0
0 + 1 = 1 carry 0
1 + 0 = 1 carry 0
1 + 1 = 0 carry 1 
1 + 1 + 1 = 1 carry 1

Binary Addition

 

 

1

1

1

1

0

 

 

1

1

0

1

1

Total

1

1

1

0

0

1

Carry

1

1

1

1

0

 

 

Octal to denary

Octal Number

512

64

8

1

Denary Equivalent

40738

4

0

7

3

(4x512) + (0x64)+ (7x8) +(3 x 1) =2048+0+56+3 = 210710

 

Hexadecimal to Denary

Hexadecimal

256

16

1

Denary Equivalent

61016

6

1

0

(6x256)+ (1x 16) + (0x1) = 1536+16+0 = 155210

 

BIDMAS
Brackets
Indices
Division
Multiplication
Addition
Subtraction

Binary to Hexadecimal Conversion

Split Binary into sets of 4 numbers

0111

0111

0111

7

7

7

Hexadecimal to Binary Conversion

F (15)

3

C(12)

1111

0011

1100

 

Binary to Octal Conversion
Split into sets of 3 numbers


001

011

011

101

1

3

3

5

 

Octal to Binary Conversion


5

6

0

4

101

110

000

100