
 

The Activity: 

This resource comprises of 7 tasks. 

These simple activities help the students understand the concept of abstraction and how algorithms are 

used to solve problems. 

 

 
 
 
Associated materials: 

‘Algorithms – Abstraction’ Lesson Element learner activity sheet. 

 

 

 Algorithms – Abstraction 

 

Instructions and answers for teachers  
These instructions should accompany the OCR resource ‘Algorithms - Abstraction’ activity which 
supports OCR GCSE (9 –1) Computer Science 
 
 
 
 
 
 

This activity offers an 

opportunity for maths 

skills development. 

This activity offers an 

opportunity for English 

skills development. 

This resource is an exemplar of the types of materials that will be provided to assist in the teaching of the new 

qualifications being developed for first teaching in 2016. It can be used to teach existing qualifications but may 

be updated in the future to reflect changes in the new qualifications. Please check the OCR website for updates 

and additional resources being released. We would welcome your feedback so please get in touch. 

 

Version 1 
 
 



 

Introduction 
Abstraction is finding patterns and packaging similar looking code into self-contained chunks of code. 

Packaging allows faster program development as it allows programmers to re-use previously created 

code, so we don't have to repeat it. This "folder of code" exists on one place in the program and other 

parts of the program "link" to it, just like web pages link to each other. Imagine, instead of sending 

somebody a link to something you liked on the internet, you had to copy and paste it inside your 

message! It would be much less efficient. 

 

Apart from the extra time and memory used by this operation, if the page got updated, your recipient will 

have outdated information, while when sending a link, if they choose to follow it they will get the real up-

to-date version of the page. It makes for easier maintenance - change the code in one place and the 

links to this code from elsewhere in your program will not need to be changed. Additionally, when 

programming as a team, other programmers don't need to know how your part works, they can just link 

to it - they become users of your program, its workings are hidden from them by what we call "the layer 

of abstraction". 

 

Processing data and implementing formulas requires a particular sequence of steps. It is not always the 

case and depends on the task. In Cooking, the order in which you add ingredients matters. In Maths, 

addition doesn't care about which order you add numbers in, while division does. Similarly, in 

programming, command-line interfaces and batch processing require predetermined order for user input, 

while with graphical user interfaces, buttons can be clicked in different order, so, no set algorithm for 

user input is needed. 
 
Task 1 

This activity will require a widely accessible programming package Scratch 2.0, either in its off-line 

(application https://scratch.mit.edu/scratch2download/) version or its online version 

(https://scratch.mit.edu/).  It is important that procedures (custom blocks) are supported. 

  

Task 1: Drawing polygons in Scratch (will also work in any language with “pen” capabilities, eg Python 

Turtle). A square is an example of a polygon with 4 sides and 4 angles. As the angles of a complete 

polygon need to add to 360 degrees (otherwise, there will be gaps in its perimeter), each of the 4 angles 

is 360/4=90 degrees, as the pupils will know. 

 

Version 1 
 

https://scratch.mit.edu/scratch2download/


 

Learners will develop an algorithm to draw a square in Scratch 2.0, first line by line (see file 

Scratch1.png), then as a procedure (see file Scratch1.png), then as a generic polygon. As you can see, 

at this stage, calling this procedure doesn't tell us how the shape is drawn; we just use it by supplying 

the parameters to draw the polygon as we need it. 

 
Task 2 
Decomposition is the process of breaking a complex problem down in to smaller more manageable 

portions. Decomposition makes great use of abstraction by identifying common patterns in these 

portions and reusing the code written for one part on other parts.  

 

In this task, learners will look at Chinese letters which are made up of simpler parts and research the 

process through which the meaning gets “composed”. 

 

Task 3 – Algorithmic Thinking 
A well-known problem involves getting some creatures across the river in the same boat (such as 

described here: http://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle). Discuss what 

happens if the farmer uses the wrong algorithm to carry them across? 

 

Can you make this problem more complex by introducing another creature that is dangerous to any of 

those present in the puzzle already. 

 

Task 4 – Standard searching algorithms 
Issues:  
The learners need to be aware that both searching methods are used and have their place. Regardless 

of the algorithm used, the learners need to be aware (it's a common mistake) that the algorithm must 

allow for a condition where the search is over but the item is not found. The choice of the searching 

algorithms depends on the data that needs to be searched. The data that is unsorted will have to be 

searched in a linear, no-stone-unturned-until-found, door-to-door [picture of travelling 

salesperson/policeman or another suitable analogy for someone visiting every single house on a street]. 

This is because we don't know enough about the data to use any shortcuts. We can say that unsorted 

data is a poorer quality than sorted as the linear search is inefficient and processor intensive. However, 

storing data in unsorted state works better for weaker processors that might be overwhelmed by the 

process of simultaneously recording new data and sorting it. 

 

Version 1 
 

http://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle


 

Binary search is much more efficient as we need to look at the fewer items before we find the one we 

need. How is that achieved?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Version 1 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Version 1 
 



 

When booking into this hotel, you make it to your floor and this sign is the first thing you see. If you are 

looking for room 318, you will not have to search the entire floor, just the left side. To simplify the search 

for your room, the hotel conveniently numbered their rooms in sequence and placed the entrance to the 

floor in the middle, so that you can halve your search effort and time. You know by now that "binary" 

could be translated "one of the two options" - which is what the hotel gives you here - left or right. 

Imagine that if you do go left and about half way through that side of the floor, the corridor turns and 

branches out into further 2 halves with numbers "319-321" and "322-327". Which way will you turn? 

 

Binary search 
A hotel has 120 rooms located on 3 floors and 4 lifts/staircases. Design a floor plan (or signs for a given 

floor plan) for each of lifts/staircases. Assuming a person starts at lift 2. How many signs will they see 

before they find their room? 

 

Given pseudocode for a binary search, write it as (a) structured English; (b) code in your preferred high 

level language  

 

Linear search 
Given pseudocode for a linear search, write it as (a) structured English; (b) code in your preferred high 

level language 

 

 

 

 

 

 

 

 

Version 1 
 



 

Task 6 
Sorting and searching could end up being quite dry unless there is a visual element to them. There are 

many visualisations of the searching and sorting algorithms available on the internet, such as the one at 

http://www.sorting-algorithms.com. You will find that learners understand the algorithms better if they 

also can plot the results using a language with graphics abilities, eg 

Scratch/BYOB/Snap/AppInventor/Python/Basic, etc. The tasks would involve generating a random list of 

numbers and then applying an algorithm to it. Provided is an example of visualising a list in Scratch 2.0, 

using abstraction via a procedure. This procedure uses the “stamp” feature (which imprints the copy of 

the sprite’s costume onto the Stage. The sprite’s costume should be a smallish square (although, most 

symmetric shapes should work, as well). 

 

Learners should be given an opportunity to implement just the plotting of a list via the provided example 

and then they can design. 

 

For the extension activity, here is an example of using Python Turtle to do a visualisation of the Insertion 

Sort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Version 1 
 



 

import turtle; from random import sample, choice; import time 

COLOURS = ["firebrick", "dark goldenrod", "sienna", "chartreuse4", 

           "DeepSkyBlue3", "medium violet red", "red4", "saddle brown", 

           "dark olive green", "spring green", "cadet blue", "deep pink"] 

 

screen = turtle.Screen() 

t = turtle.Turtle(); t.speed(0); t.width(10) 

 

def draw_col(x, y): 

    t.penup() 

    t.goto(x, 0) 

    t.pendown() 

    t.setheading(90) 

    t.forward(y) 

 

def draw_sort(s): 

    for i in s: 

        draw_col(s.index(i)*15, i) 

 

def insertion_sort(s=sample(range(100), 10)): 

    startTime = time.time() 

    print("Insertion sort") 

    print(s) 

    for i in range(1, len(s)): 

        val = s[i] 

        j = i - 1 

        while (j >= 0) and (s[j] > val): 

            s[j+1] = s[j] 

            j = j - 1 

Version 1 
 



 

        s[j+1] = val 

        t.pencolor(COLOURS.pop()) 

        draw_sort(s) 

    endTime = time.time() - startTime 

    print ("Time taken: " + str(endTime) + " seconds") 

    return s 

 

def quick_sort(s=sample(range(100), 10)): 

    startTime = time.time() 

    print(s) 

    less = [] 

    equal = [] 

    greater = [] 

 

    if len(s) > 1: 

        pivot = s[0] 

        for x in s: 

            if x < pivot: 

                less.append(x) 

            if x == pivot: 

                equal.append(x) 

            if x > pivot: 

                greater.append(x) 

        print(less+equal+greater) 

        return quick_sort(less)+equal+quick_sort(greater) 

    else: 

        endTime = time.time() - startTime 

        print (endTime) 

        return s 

Version 1 
 



 

if __name__ == "__main__": 

    print(insertion_sort()) 

    #print("Quick sort") 

    #s = quick_sort() 

    #print(s) 

    screen.exitonclick() 

 

Task 7 
Pseudocode, flow charts and structured English are used to describe the code before it is created. They 

are “language-agnostic” – meaning pseudocode doesn’t contain any references to any specific 

languages and in fact, the choice of the language used to do a program happens after the pseudocode is 

complete. The knowledge of pseudocode is needed for both exams and controlled assessment task 

submissions. 

 

Learners should be fluent in converting problems between the 3 techniques (and, of course to an actual 

code of a language like Python or JavaScript). This exercise asks pupils to create a dictionary – a 

“Rosetta Stone”. 

 

 

 

 

 

    
 

OCR Resources: the small print 
OCR’s resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board, and the 

decision to use them lies with the individual teacher.   Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or 

omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version. 

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of 

this work. 
 

OCR acknowledges the use of the following content: Maths and English icons: Air0ne/Shutterstock.com, Thumbs up and down icons: alexwhite/Shutterstock.com 

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk  

 

We’d like to know your view on the resources we produce.  By clicking on the ‘Like’ or ‘Dislike’ button you 
can help us to ensure that our resources work for you.  When the email template pops up please add 
additional comments if you wish and then just click ‘Send’.  Thank you.  

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression 
of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest  

 

Version 1 
 

mailto:resources.feedback@ocr.org.uk?subject=I%20liked%20the%20OCR%20GCSE%20(9-1)%20Computer%20Science,%20Algorithms%20%E2%80%93%20Abstraction%20Lesson%20Element%20Teacher%20Instructions
mailto:resources.feedback@ocr.org.uk?subject=I%20disliked%20the%20OCR%20GCSE%20(9-1)%20Computer%20Science,%20Algorithms%20%E2%80%93%20Abstraction%20Lesson%20Element%20Teacher%20Instructions
mailto:resources.feedback@ocr.org.uk
http://www.ocr.org.uk/expression-of-interest
mailto:resources.feedback@ocr.org.uk?subject=I%20disliked%20the%20OCR%20GCSE%20(9-1)%20Computer%20Science,%20Algorithms%20–%20Abstraction%20Lesson%20Element%20Teacher%20Instructions�

	Instructions and answers for teachers
	Introduction
	Task 1
	Task 2
	Task 3 – Algorithmic Thinking
	Task 4 – Standard searching algorithms
	Task 6
	Task 7




