Getting Started
Guide

GCSE (9-1) Computer Science
Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science (1CP1)

ALWAYS LEARNING PEARSON



Getting Started: GCSE Computer
Science 2016

1. Introduction
1.1 Key principles
1.2 Support
2. What's changed?
2.1 How have GCSEs changed?
What does this mean for Computer Science?
Changes to assessment requirements
Assessment Objectives
2.2 The Edexcel Computer Science specification
Updated content
Additional content
How does the new specification compare with the old one?
How has the assessment changed?
3. Planning
3.1 Planning and delivering a linear course
3.2 Suggested resources
4. Content guidance
4.1 Overview
4.2 Subject content
Topic 1: Problem solving
Topic 2: Programming
Topic 3: Data
Topic 4: Computers
Topic 5: Communication and the internet
Topic 6: The bigger picture

O VW VW owoOoNNNNodToo QU AMNIPAEEAMAMNLVWVWWWER R, R

5. Assessment guidance 10
5.1 Overview 10
5.2 Examination papers 11

Paper 1: Principles of Computer Science 11
Paper 2: Application of Computational Thinking 11
Computer-related mathematics 12
5.3 Non-Examined Assessment 12
Synoptic assessment 13
Project stages 13
What evidence is required? 14



Carrying out the project
Marking guidance
Moderation process
Teachers’ guide to the NEA
6. Mark schemes and question styles
6.1 Question types
6.2 Command words
6.3 Mark schemes
7. Grading structure

8. Timeline

15
16
16
16
17
17
17
18
19

20



1. Introduction

1. Introduction

This Getting Started Guide provides an overview of the new GCSE Computer
Science specification. It is designed to help you get to grips with the subject
content and assessment and to understand what these mean for you and your
students.

1.1 Key principles

Our new GCSE Computer Science specification is intended to develop students’
understanding of the principles of computer science and their ability to apply
computational thinking to problem solving.

We consulted widely on the proposed content and assessment methodology of the
specification. Involved in the consultation were:

teachers from a number of schools and colleges, with different levels of
experience of teaching computer science

our Expert Stakeholders’ Advisory Group, comprising university academics
from University of Greenwich, King’s College London and Brighton University

and the wider computer science community, including the Computing at
Schools (CAS) group and the British Computer Society (BCS).

Six key principles underpin our new specification. They are:

Clear and coherent structure - making it easy to see what students need
to know and be able to do

Contemporary content — emphasising the real-world relevance of computer
science and considering the issues and impact of computing technology

Focus on computational thinking — developing an effective approach to
problem solving

Clear assessment - assessing theoretical understanding and practical skills

Inclusive and accessible - enabling students of all abilities to study
computer science

Continuous progression - building on the knowledge, understanding and
skills developed through the computing programme of study in Key Stages 1
to 3 and fostering progression to further study at Key Stage 5 and beyond.

1.2 Support

We are providing a comprehensive package of free support to help you plan and
implement our new GCSE in Computer Science.

Planning — An editable course planner and schemes of work that you can
adapt to suit your department.

Teaching materials - Editable outline lesson plans, lesson and homework
activities with solutions that you can adapt and use to save you time, plus
additional teacher support material.

Mapping — The mapping document highlights key differences between the
new specification and the previous one, and between different Awarding
Organisation’s specifications.

Understanding the standard - Sample Assessment Materials (SAMs) and
exemplar student work with commentaries, for both the examined and non-
examined components, help you to get to grips with the format of the papers
and the level of demand.

© Pearson Education Ltd 2015.



1. Introduction

e Tracking learner progress — Our online ResultsPlus service provides
detailed analysis of students’ examination performance, helping you to
identify topics and skills where further learning would benefit your students.

e examWizard - A useful examination preparation tool containing a bank of
past Edexcel GCSE Computer Science questions, mark schemes and
examiners’ reports.

e Advice - Our subject advisor service, led by Tim Brady, is a direct and
personal source of help and support. Sign up to receive Tim’s e-newsletter! to
keep up to date with qualification and service news.

e Website — The GCSE 2016 Computer Science pages of our website provide a
one-stop shop for information and resources?.

e Getting Ready to Teach - Online and Face2Face (F2F) events helping you
to prepare to teach the new GCSE in Computer Science.

1
https://mail.google.com/mail/u/0/?view=cm&fs=18&tf=1&source=mailto&su=Sign+me+up+for+Co
mputer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign
+me+up+to+receive+regular+Computer+Science+email+updates.

2 www.qualifications.pearson.com/compsci2016

2 © Pearson Education Ltd 2015.


https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&su=Sign+me+up+for+Computer+Science+email+updates&to=TeachingComputerScience@pearson.com&body=Please+sign+me+up+to+receive+regular+Computer+Science+email+updates.
http://qualifications.pearson.com/compsci2016

3. Planning

2. What's changed?

2.1 How have GCSEs changed?

e Updated content - All GCSEs are being revised, with changes taking place in
three phases between 2015 and 2017.

e Linear - In future all GCSEs will have a fully linear structure. This means that
the content is no longer divided into discrete modules and all assessment
takes place at the end of the course.

e Assessment — Written examinations are the default method of assessment,
except where they cannot provide valid assessment of all the skills required.
This is the case with Computer Science. Even where coursework is deemed to
be necessary it must contribute no more than 20% of the total marks
available and be submitted at the end of the course.

e Grading - There is a new grading system that uses numbers instead of
letters to represent grades. The new grades are on a scale 9-1, with 9
representing the highest grade and 1 the lowest. See page 19 in the
specification for more information on the grading scale and how the grades
relate to current GCSE grades.

e Guided learning hours — The number of guided learning hours (GLH)
allocated to study of a GCSE qualification remains unchanged at 120 GLH.

What does this mean for Computer Science?

For the first time the Department for Education (DfE) has specified subject content
for GCSE Computer Science.

Computer Science: GCSE Subject Content (January 2015)3 sets out the knowledge,
understanding and skills common to all GCSEs in Computer Science. Awarding
organisations must ensure that their specification provides complete coverage of
the subject content. Key features include:

¢ Knowledge and understanding - includes algorithms, contemporary
secondary storage, cyber security and network protocol layers, alongside
more familiar content such as binary representation of numbers, Boolean logic
and systems architecture.

e Problem solving - advocates a systematic approach to problem solving
using decomposition and abstraction.

e Programming = requires students to use one or more high-level
programming languages with a textual definition, selected from a list
approved by the awarding organisation.

e Computing-related mathematics - specifications must include appropriate
computing-related mathematics.

Changes to assessment requirements

The GCSE Subject Level Conditions and Requirements for Computer Science (May
2015)% issued by Ofqual sets out the rules and regulations for GCSEs in Computer
Science.

3

https://www.gov.uk/government/uploads/system/uploads/attachment data/file/397550/GCSE sub
ject _content for computer science.pdf

4 www.gov.uk/government/uploads/system/uploads/attachment data/file/427399/gcse-subject-
level-conditions-and-requirements-for-computer-science.pdf

© Pearson Education Ltd 2015. 3


https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427399/gcse-subject-level-conditions-and-requirements-for-computer-science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427399/gcse-subject-level-conditions-and-requirements-for-computer-science.pdf

2. What's changed?

It stipulates that assessment by examination must contribute 80 per cent of the
total marks available, with Non-Examined Assessment (NEA) making up the
remaining 20 per cent.

The NEA component must be a single, 20-hour project that requires students to
design, write, test and refine a program and produce a written report.
Assessment Objectives

In the same document Ofqual specifies a set of three Assessment Objectives for
GCSE qualifications in Computer Science. They are:

AO1 Demonstrate knowledge and understanding of the key
30% concepts and principles of computer science.
AO2 Apply knowledge and understanding of key concepts and
40% principles of computer science.
AO3 Analyse problems in computational terms:
30% + to make reasoned judgements; and

» to design, program, evaluate and refine solutions.

These Assessment Objectives place particular emphasis on application of
knowledge, understanding and problem solving, reflecting the fact that although
Computer Science is an academic discipline with a defined body of knowledge, it is
also a highly practical subject.

Further information on how to interpret the Assessment Objectives can be found in
the document GCSE Subject Level Guidance for Computer Science (May 2015)>,
published by Ofqgual.

2.2 The Edexcel Computer Science specification

Updated content

All GCSES are being revised, with changes taking place in three phases between
2015 and 2017.

Our legacy GCSE Computer Science (2013) anticipated many of the changes that
Ofqual has now introduced. Consequently, we have been able to carry forward,
unaltered, most of the content and approach of the legacy specification into our
new 2016 specification. This makes for a very smooth transition from old to new.

That said, it has been necessary to make some changes in order to fully comply
with the new subject content and assessment requirements.

Additional content

In response to feedback we received from our stakeholders, we have included some
additional topics over and above the mandatory content specified by the DfE. These
topics are already in our legacy specification.

e Databases — A ‘must’ given the prevalence of structured data in the world
today.

e Input-process-output — The model of computation that permeates all
aspects of computer science.

e The internet - A basic knowledge of the internet is a prerequisite for
studying network protocols, cyber-security and contemporary storage.

5> www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science

4 © Pearson Education Ltd 2015.


https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-guidance-for-computer-science

3. Planning

e Text files — Being able to reuse data stored in files is what makes computer
processing so powerful, which is why we feel that students should have
hands-on programming experience of reading from and writing to files.

How does the new specification compare with the old one?

While the subject content of the two specifications is divided into the same six
topics, there are some differences between them. Overall, the 2016 specification
has less content than its predecessor.

No longer included:
e Structured English (Topic 1)
e Cartesian coordinates and user interfaces (Topic 2)
SQL (Topic 3)
Assembly language (Topic 4)
HTML/CSS (Topic 5)
e Emerging technologies (Topic 6).

What's new:

e Students have to be able to write pseudo-code as well as read it and there’s a
greater emphasis on abstraction (Topic 1)

e The record data structure (Topic 2)
e A new sub-section on network security (Topic 5).

There is a mapping document comparing the content of the 2013 specification with
that of the new 2016 specification on the GCSE 2016 Computer Science pages of
our website®.

How has the assessment changed?

The 2016 specification has three assessment components rather than two, and the
weighting for coursework (see below) has gone down from 25 per cent to 20 per
cent.

Two exam papers instead of one

Instead of having just one written paper covering all six topics, the new
specification has two papers - one focusing on principles of computer science and
the other on computational thinking — each with a weighting of 40 per cent.

Nevertheless, the general approach remains the same: contextualised questions,
split into a number of parts, papers ‘ramped’ so questions become more difficult as
students move through the paper and a variety of question styles.

Non-Examined Assessment replaces controlled assessment

Non-Examined Assessment (NEA) replaces controlled assessment (CA). Instead of
tackling three related programming tasks in 15 hours as in the legacy 2013
specification, students have 20 hours in which to undertake one substantial project.

In this specification students must analyse a problem and design, implement, test,
refine and evaluate a solution. NEA must be carried under similar controlled
conditions to those pertaining to controlled assessment (see page 10 for more
details of the assessment).

6 See footnote 2.

© Pearson Education Ltd 2015. 5



3. Planning

3. Planning

3.1 Planning and delivering a linear course

The GCSE in Computer Science has a notional time allocation of 120 guided learning
hours.

We recommend a minimum of two one-hour lessons a week (or equivalent) to
adequately cover the content, embed skills such as problem solving and
programming into your teaching, and to prepare students for the assessments.

Because this is a linear qualification, teachers have more flexibility in structuring the
course and more time for teaching in the first year.

However, when planning delivery, it is important to leave sufficient time for revision
in the second year, particularly to revisit topics studied in the first year.

In addition, skills development needs to be ongoing so that students have the
necessary problem-solving and programming know-how to tackle the NEA, which
must be completed sometime during the second year of the course.

We have developed a free, downloadable course planner together with outline
lesson plans and activities, which you may find useful. You can use the materials as
given, modify them to suit your students or simply refer to them to get ideas.

These planning materials can be downloaded from the GCSE 2016 Computer
Science pages of our website”’.

3.2 Suggested resources

Generic resources

There are some fantastic generic resources available online. CAS has a huge bank
of materials. The Khan Academy has some excellent materials designed for self-
directed study. There are also a number of introductory computer science MOOCs
provided by HE consortia, such as Coursera, Edx and FutureLearn. Some of these
may be suitable for students working in self-study mode.

Specification-specific resources

Pearson-published resources provide comprehensive support for the new Edexcel
GCSE Computer Science specification. They consist of:

e a Student Book and Institutional Activebook to support great computer
science teaching through a scenario-based approach to problem solving and
computational thinking.

e a Revision Guide and Workbook to help students with mock and final exam
preparation.

We are also working with a range of other publishers, including Hodder, who are
seeking endorsement for the resources they are developing for the new
specification.

An up-to-date list of suggested resources can be viewed on the GCSE 2016
Computer Science pages of our website®.

7 See footnote 2.
8 See footnote 2.

6 © Pearson Education Ltd 2015.


http://qualifications.pearson.com/compsci2016
http://qualifications.pearson.com/compsci2016

4. Content guidance

4. Content guidance

4.1 Overview

The subject content of the specification combines knowledge and understanding of
the principles of computer science with practical problem solving and programming
skills.

4.2 Subject content

The subject content is divided into six topics:
1. Problem solving

Programming

Data

Computers

i AW N

Communication and the internet
6. The bigger picture

Each topic is divided into one or more sections and each section consists of a
number of statements.

The topics are interlinked. It would not be appropriate to work through the
specification teaching one topic after another sequentially. This applies particularly
to Topics 1 and 2, which are intended to be taught together and to form a
continuous ‘thread’ throughout the course.

Topic 1: Problem solving

The introduction to Topic 1 states that students are expected to develop a set of
computational thinking skills that enable them to understand how computer
systems work, and design, implement and analyse algorithms for solving problems.

It should be noted that computational thinking is a core component of the entire
qualification and is not just confined to Topic 1, which focuses on techniques.

The topic is divided into two sections. Section 1.1 focuses on algorithms and Section
1.2 on decomposition and abstraction.

Students are expected to be able to interpret and express algorithms as written
descriptions, flowcharts, pseudo-code and program code.

Any questions in the written examinations that use pseudo-code will use the
pseudo-code command set provided in Appendix 1 of the specification.

Please note — students are not obliged to use this pseudo-code. Any valid
alternative is acceptable. However, familiarity with the given pseudo-code could
increase confidence when interpreting questions.

The flowchart symbols students are expected to know and be able to use can be
found in Appendix 2 of the specification. There are only four simple flowchart
symbols; students can use flowchart templates during the examination although
these often contain many more symbols than are needed and may be restrictive in
the defined space on a question paper.

Students should be given repeated opportunities throughout the course to tackle
computational problems of various sorts, including some substantial problem-
solving tasks.

Statement 1.1.8 lists the standard algorithms students are expected to know. These
are bubble sort, merge sort, linear searches and binary searches. Students don't

© Pearson Education Ltd 2015. 7



5. Assessment guidance

have to use these algorithms in their own programs but they do need to know how
they work and be able to demonstrate how they operate on a given set of data.

Statements 1.2.1 and 1.2.2 encapsulate the first stage of problem solving. Students
will be expected to adopt this approach when undertaking the NEA project.

Statements 1.2.3 and 1.2.4 cover abstraction; a theme that is revisited in the
section on subprograms in Topic 2.

Topic 2: Programming

Topic 2 focuses on the programming knowledge and skills students need to learn
and practise. The topic introduction states that they should be competent at
designing, reading, writing and debugging computer programs and should be given
repeated opportunities to develop and practise their programming skills throughout
the course.

Section 2.1 spells out the approach that students should use when developing and
testing program code.

Statement 2.1.3 focuses on the three different types of errors that occur in
programs.

Statement 2.1.4 covers test plans and test data and Statement 2.1.5 looks at
identifying and correcting errors in code.

Sections 2.2 to 2.6 specify the structural components of programs, the
programming constructs and the data structures that students are expected to
understand and use. In some instances this may mean working with the nearest
equivalent. For example, Python doesn’t have a built-in data type for an array; the
nearest equivalent is a list, which can be used in much the same way as an array.
Nor does Python have a dedicated record data type; the built-in dictionary type is
the nearest equivalent.

Students are required to use a high-level programming language with a textual
definition to complete the NEA assignment. They must choose from one of the
Edexcel-approved languages. These are Python, Java, Visual Basic.NET, Pascal or
Object Pascal or a C-derived language (C, C++ or C#).

Students are not required to develop programs that have a graphical interface.
Simple text (console) mode programs will suffice.

Topic 3: Data

This is a wide-ranging topic covering binary representation of data, data
compression, encryption and relational databases. It provides a useful context for
developing computing-related maths skills.

Section 3.1 covers binary representation of humbers, conversion from binary to
denary and vice versa, binary arithmetic and hexadecimal.

Section 3.2 deals with how text, images and sound are represented in binary and
considers the limitations of binary representation.

Section 3.3 focuses on data storage and compression - lossless and lossy. In
statement 3.3.1 the terms kilobyte (KB), megabyte (MB), gigabyte (GB) and
terabyte (TB) refer to binary representation, for example a kilobyte (KB) is 1024
bytes. Statement 3.3.3 stipulates that students should understand how a lossless
run-length encoding algorithm works. Question 2 in the Paper 1 SAM assesses
understanding of compression. Statement 3.3.4 focuses on file storage and states
that students must be able to calculate file sizes.

Section 3.4 considers the need for data encryption. Statement 3.4.2 requires
students to understand how a Caesar cipher algorithm works.

Section 3.5 focuses on databases — how data can be decomposed and structured in
a relational database. There is no requirement for students to have any practical
experience of using structured query language.

© Pearson Education Ltd 2015.



4. Content guidance

Topic 4: Computers

Topic 4 is concerned with the hardware and software components of a computer
system. Students are expected to recognise that computers take many forms from
embedded microprocessors to distributed clouds.

Section 4.1 focuses on the input-process-output model of computation, which
permeates all aspects of computer science. It describes how computers execute
programs - by receiving inputs (instructions and data), working out what to do with
them and then outputting some form of result. It encapsulates the process of
writing software, a computer program consists of a series of instructions, which
accept input, carry out some processing and return output, and it underpins the
design of the Von Neumann architecture in Section 4.2.

Section 4.2 focuses on the hardware components of a computer system, the role of
the components of the CPU in the fetch-decode-execute cycle and contemporary
secondary storage, including the ‘cloud’. Statement 4.2.6 hones in on the need for
and functions of embedded systems.

Logic is covered in Section 4.3. Students must be able to construct truth tables and
produce logic statements for given problems.

Section 4.4 covers operating systems and utility software. Statement 4.4.3 is
another ‘take’ on abstraction. Students are expected to understand how software
can be used to simulate and model aspects of the real world.

Section 4.5 covers high- and low-level programming languages. Statement 4.5.2
focuses on different methods of translating high-level languages into machine code,
including the role of an assembler, a compiler and an interpreter.

Topic 5: Communication and the internet

Topic 5 focuses on the key principles behind the organisation of computer networks.

Section 5.1 covers networks essentials, including types of networks, usage models
and topologies. Statement 5.1.5 is concerned with the role of and need for network
protocols. It includes a list of the protocols students are expected to know about.

Network and cyber-security is the focus of Section 5.2 and is a key new topic in the
Computer Science: GCSE Subject Content (January 2015)°. Statement 5.2.3
specifies the forms of cyberattack that students must know about, statement 5.2.4
covers methods of identifying vulnerabilities and statement 5.2.5 demonstrates how
to develop resilient software systems that are resistant to cyberattacks.

Section 5.3 covers the internet and world wide web, focusing on the structure of the
internet in statement 5.3.1 and the components of the world wide web in statement
5.3.2. There is no need for students to have any practical experience of using a
mark-up language.

Topic 6: The bigger picture

Topic 6 focuses on an awareness of the influence of computing technology on
emerging trends, the issues and the impact on today’s world. Statement 6.1.1 is
concerned with the environmental impact, in particular the issues associated with
health, energy use and resources. Statement 6.1.2 considers the ethical impact,
honing in on privacy, inclusion and professionalism. Statement 6.1.3 is designed to
raise awareness of legal and ownership issues associated with computing
technology - important considerations for budding computer scientists!

9 See footnote 3.

© Pearson Education Ltd 2015. 9



5. Assessment guidance

5. Assessment guidance

5.1 Overview

The GCSE in Computer Science has three assessment components.

Component Title Overview Summary of
assessment
Component 1 Principles of All topics Examination
40% go_mputer Multiple choice,
cience
1 hour and 40 short-open,
minutes extended-open and

open response
questions

Component 2

Application of
Computational

Focuses mainly on
Topics 1 and 2,

Scenario-based
examination

40% L
5 hours Thinking but may also Short. extended
ur '
draw on content | 314 gpen response
from the_: other questions
four topics
Component 3 Project A program that is | Non-Examined
20% f:lesigned, Assessment
20 hours implemented, A levels-based

tested, plus a

g mark scheme, with
written report

separate grids for
each of the four
stages of
development

The raw marks for Components 1 and 2 in this qualification will be scaled to
represent the relative weighting of 40 per cent for Component 1 and 40 per cent for
Component 2.

This is an awarded qualification. Following the marking of scripts at the end of an
examination series, an awarding committee will decide where to set the raw mark
grade boundary for each of the three components. Raw mark grade boundaries can
vary from series to series.'® A uniform mark scale (UMS) is used to convert
component raw marks into uniform marks. Uniform mark grade boundaries are
fixed and do not change from series to series.

Students must sit both examinations at the end of the course. Their NEA
assignment marks will be submitted on the date specified by the Joint Council for
Qualifications (JCQ).

10 You can find out more about how grades are awarded by visiting:
www.qualifications.pearson.com/en/support/support-topics/results-certification/understanding-
marks-and-grades.html

10 © Pearson Education Ltd 2015.


http://qualifications.pearson.com/en/support/support-topics/results-certification/understanding-marks-and-grades.html
http://qualifications.pearson.com/en/support/support-topics/results-certification/understanding-marks-and-grades.html

5. Assessment guidance

5.2 Examination papers

There are two written examination papers; both are taken at the end of the course.

Paper 1: Principles of Computer Science
Paper 1 targets Assessment Objectives 1 and 2. It assesses content from across the
specification.

It is 1 hour and 40 minutes in length, is marked out of 80 and has a weighting of 40
per cent.

All questions are compulsory.
Calculators are not allowed.

A clean copy of the pseudo-code booklet (available electronically on the Pearson
website) should be printed and made available to each student.

The first examination will take place in June 2018.

The paper assesses students’ understanding of:
e what algorithms are, what they are used for and how they work
e the requirements for writing program code

e binary representation, data representation, data storage and compression,
encryption and databases

e components of computer systems
e computer networks, the internet and the world wide web
e the influence of computing technology and the impact on society, including
environmental, ethical, legal and ownership issues
and their ability to:
e interpret, amend and create algorithms
e construct truth tables and produce logic statements.

Every question has several parts and is set in a context. A variety of question styles
are used: multiple-choice, short-open response, open response and extended-open
response. Most questions have some straightforward parts and some more
challenging ones. See page 17 for more details of the question styles used in the
written paper.

The paper is ‘ramped’, meaning that questions become more difficult as you move
through the paper.

Although spelling, punctuation and grammar are not directly assessed, students are
expected to employ good writing skills in their longer answers. For a written
extended-response question the maximum number of marks will be 6.

Paper 2: Application of Computational Thinking

As its title makes clear, the focus of Paper 2 is computational thinking. The paper
targets all three Assessment Objectives. It draws mainly on Topics 1 and 2, but
may also touch upon content from the other four topics.

It is 2 hours in length. This is to ensure that students have sufficient ‘thinking’ time
for problem solving. Like Paper 1, it is marked out of 80 and has a weighting of 40
per cent.

All questions are compulsory.
Calculators are not allowed.

© Pearson Education Ltd 2015. 11



5. Assessment guidance

A clean copy of the pseudo-code booklet (pages 23-30 or 71-78 in the Sample
Assessment Materials!!) should be printed and made available to each student.

The first examination will take place in June 2018.
The paper assesses students’ understanding of:
e what algorithms are, what they are used for and how they work

e how to develop program code, using programming constructs, data types and
structures, input/output, operators and subprograms

and their ability to:
e interpret, amend and create algorithms.

A real-world context is used throughout the paper. As well as more traditional
question styles, there are tables to complete and algorithms to interpret, amend,
trace and design.

This paper too is ‘ramped’.

Longer answers in this paper are likely to involve creation of an algorithm
expressed either in pseudo-code or as flowchart. See page 17 for more details of
the question styles used in the written paper.

Computer-related mathematics

The use of computer-related mathematics is assessed in context in both written
papers, such as in questions that require students to:

e convert between binary and denary (3.1.3)

e perform binary arithmetic (3.1.4)

e convert between hexadecimal and binary (3.1.5)

e convert between units of measurement (3.3.1)

e calculate file sizes (3.3.4)

e construct expressions that use arithmetic, relational or logical operators
(2.5.1, 2.5.2, 2.5.3)

e construct truth tables and logic statements (4.3.1, 4.3.2).

5.3 Non-Examined Assessment

The Non-Examined Assessment component targets Assessment Objectives 2 and 3.
It is marked out of 60 and has a weighting of 20 per cent.

Students must undertake a single project that requires them to analyse a problem
and then design, implement, test, refine and evaluate a computer program to solve
it.

Students may complete the assignment over multiple sessions, up to a combined
duration of 20 hours.

The program must be written in a high-level textual language. The languages
approved for use by Edexcel are:

e Python

e Java

e Pascal or Object Pascal

e Visual Basic.NET

e C-Derived (C, C++ or C#).
Access to the internet is not allowed.

11

http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specificatio

n%20and%20sample%20assessments/computer-science-sam.pdf

12

© Pearson Education Ltd 2015.


http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specification%20and%20sample%20assessments/computer-science-sam.pdf
http://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2016/Specification%20and%20sample%20assessments/computer-science-sam.pdf

5. Assessment guidance

A clean copy of the pseudo-code booklet (available electronically on the Pearson
website) should be made available to each student.

A printed or digital syntax guide for the high-level programming language being
used can also be made available to students. An example is provided in Appendix 3
of the specification.

If a data file is required to complete the project, it will be provided by Pearson.

A new project brief will be published on the Pearson website each September, from
September 2017.

There is no choice of project brief. Students must attempt the project that is
published in the final year of their course.

First assessment will take place in 2018.

Students must submit their program along with a report evidencing the
development process, including an evaluation.

The NEA assesses students’ ability to:
e analyse and decompose problems
e design solutions and create algorithms
e design and use test plans and test data

e develop program code, using programming constructs, data types and
structures, input/output, operators and subprograms

e evaluate a program and suggest improvements.

It is the centre’s responsibility to ensure that assignments are valid for the series in
which they are submitted.

Synoptic assessment

Synoptic assessment requires students to work across different parts of a
qualification and to show their accumulated knowledge and understanding of a topic
or subject area. Synoptic assessment enables students to show their ability to
combine their skills, knowledge and understanding with breadth and depth of the
subject. Synopticity is assessed in the NEA.

Project stages

The project is divided into four stages.
1. Analysis
2. Design
— Solution design
— Test strategy and initial test plan
3. Implementation
— Implementing the design
— Building the solution
4. Testing, refining and evaluation

The analysis is worth 6 marks. Students must analyse the given problem and
produce a list of the requirements; decompose the problem into manageable sub-
problems and produce a brief written description of each; and explain why the
chosen decomposition is appropriate. They are not expected to produce flowcharts
or pseudo-code at this stage.

More information about the analysis stage of the assignment can be found on page
20 of the specification.

The design is worth 18 marks — 12 for designing a solution to the problem and 6
for devising a test strategy and initial test plan.

© Pearson Education Ltd 2015. 13



5. Assessment guidance

Students must design an algorithm (or algorithms) to meet the requirements of the
problem. They can use pseudo-code, flowcharts or written descriptions to do so.
The use of program code at this stage is not permitted. The algorithm should be
fully decomposed into sub-programs and show the links between sub-programs.

The test strategy should outline the approach to testing the student intends to take
and should be reflected in the initial test plan. A test plan template will be provided.
At this stage only the first four columns should be completed. Where appropriate,
test data should cover normal, erroneous and boundary values. Further tests can be
added to the plan at a later stage if required.

More information about the design stage of the assignment can be found on pages
22-24 of the specification.

The implementation is worth 24 marks - 6 for implementing the design and 18 for
building the solution.

Students must use a high-level programming language to convert their design into
executable code. They will have to make decisions about the data types of
variables, how best to implement data structures and subprograms in their chosen
language, etc.

The final program should be fully functional and meet all the identified
requirements. It should have been fully decomposed into subprograms and be clear
and easy to understand.

The marks in this strand are for producing a working solution to the problem. A
program that demonstrates great coding skills but fails to solve the problem will
achieve fewer marks.

The NEA is intended to mirror a ‘real world’ approach to problem solving, where a
solution is refined as it progresses. Refinements should be added to the design and
the program code (and commented on).

More information about the implementation stage of the assignment can be found
on pages 25-27 of the specification.

Testing, refining and evaluation is worth 12 marks. Students must carry out the
test strategy they designed in stage 2 and complete the ‘Final Test Plan’. Additional
tests can be added here, including refinements.

Students should correct any errors they encounter during testing and then re-test.
A record of any additional tests that are carried out should be added to the test
plan.

More detail about the testing, refining and evaluation stage of the assignment can
be found on pages 28-29 of the specification.

What evidence is required?

1. An executable version of the program.

2. A written report documenting the work that has been carried out and including
an evaluation of the program. This table details what needs to be included in
the report.

© Pearson Education Ltd 2015.



5. Assessment guidance

Project stage Report content

Analysis e A brief introduction to the problem.
e A list of the problem requirements.

e Decomposition of the problem into sub-
problems, including:

— a brief description of the purpose of
each sub-problem.

— a short explanation of the reasoning
behind the decomposition.

Design — solution e The algorithm(s).

design e Any refinements to the design identified

during implementation, with reasons.

Design - test e The test strategy.

strategy and initial |, The initial test plan with the first four
test plan columns completed.

Implementation e A copy of the program code with any
refinements noted as comments.

e One or more screenshots demonstrating
effective use of debugging skills to correct
errors.

Testing, refining e The updated and completed test plan.
and evaluation e The evaluation.

Carrying out the project

Work on the NEA must be carried out in a supervised environment, such that
students’ work can be authenticated. This requires centres to:

e set up secure user accounts for each student, accessible only in the controlled
environment and only by that student and their supervisor.

e ensure that no work is taken out of and no reference material or notes are
brought into the controlled environment.

e prevent students from accessing the internet or intranet.

e restrict the software available to students to just the high-level programming
language they are using and a word processing package.

Students must be supervised and must not work with others on the project.
Centres are recommended to install monitoring software do that they can monitor
students at individual workstations.

Supervisors may provide support to a student who is not able to carry out sufficient
work at one stage to enable them to progress to the next stage. Any help given
should be noted on the centre assessor record sheet (available from our website)
and marks awarded accordingly.

Students may use precompiled library units with some provisos and can have
access to a printed or digital syntax guide. An example is provided in Appendix 3 of
the specification.

Further information about carrying out the project can be found on pages 14-17 of
the specification.

© Pearson Education Ltd 2015. i5



5. Assessment guidance

Marking guidance

Teachers should mark students’ finished assignments using the levels-based

marking grids provided on pages 19-29 of the specification. The same marking
grids are used to assess every NEA project.

A two-stage process should be used to mark the NEA. First decide which level best
describes the student’s response and then decide the ‘best fit’ mark within that

level. Teachers should be prepared to use the full range of marks available in a
level.

Moderation process

Edexcel will moderate the work. As of December 2015 discussion is ongoing
between all the Awarding Organisations and Ofqual about moderation procedures

Further information about marking, standardisation and moderation can be found
on page 17 of the specification.

Teachers’ guide to the NEA

Further information about the NEA can be found in the Teachers’ Guide to the NEA,
due to be published in Spring 2016

© Pearson Education Ltd 2015.



6. Mark schemes and question styles

6. Mark schemes and question styles

6.1 Question types

A range of question types is used across the two written assessments.
e Short response and multiple-choice - Usually 1 mark.
e Open response = Usually 2-4 marks.

e Extended open response (written) — 6 marks; marked using a levels-
based mark scheme.

e Extended open response (algorithm) — 6 marks; marked using a levels-
based mark scheme.

e Calculation = Usually 1-2 marks.

6.2 Command words
Amend - Alter a given algorithm so that it performs differently or to correct an
error.

Assess — Judge or decide the value, quality or importance of something in a
particular context.

For example: ‘Assess how appropriate a 1-dimensional array is as opposed to
using separate variables when storing this data.’

Calculate — Work out a nhumerical answer, showing relevant stages in the working.

For example: ‘Calculate how many bits are being transmitted per second for a
network described as three Mbps.’

Compare - Look for the similarities and differences between two (or more)
items/situations. The answer must relate to both (or all) things mentioned in the
question and should include at least one similarity and one difference.

For example: ‘Compare storing data in the ‘cloud’ with storing data on hard discs
connected to the school’s servers.’

Complete - Fill in/write all the details asked for.

For example: ‘Complete the flowchart to show this process.’
Construct = Display information in a diagrammatic or tabular form.

For example: ‘Construct test data to meet the requirements set out in the table.’
Convert = Express a quantity in alternative units.

For example: ‘Convert the hexadecimal number 3F to 8-bit binary.’

Derive = Use the information provided in the question to work out some new
information.

For example: ‘The ASCII code for the character ‘D’ is 68 in denary. Derive the
ASCII code for the character ')’ in denary.’

Describe — Give an account of something. Statements in the response are often
linked.

For example: ‘Describe how binary digits are used to represent bitmap images.’

Discuss — Explore the issue/situation/problem presented in the question.
Conclusions should be presented clearly and supported by appropriate evidence.

For example: ‘A student is learning to program. Discuss the suitability of compiled
and interpreted programming languages for the student.’

Draw - Produce an output, either by freehand or using a ruler.
For example: ‘Draw a flowchart or a diagram of a data structure.’

© Pearson Education Ltd 2015. 17



6. Mark schemes and question styles

Evaluate — Review information then bring it together to form a conclusion, drawing
on evidence including strengths, weaknesses, alternative actions, relevant data or
information. Come to a supported judgement of a subject’s qualities and relation to
its context.

For example: ‘Evaluate the use of a ‘divide and conquer’ strategy for sorting and
searching data.’

Explain = An explanation that requires a justification/exemplification of a point.
The answer must contain some element of reasoning/justification.

For example: ‘Explain how a run-length encoding algorithm works.’
Fill in = Synonymous with ‘Complete’.

For example: *Fill in the table to show an input, a process and an output, using
the following information:’

Give = Recall a piece of information. When used in relation to a context, it is used
to determine a student’s grasp of the factual information presented.

For example: ‘Give one reason why programmers use subprograms.’

Identify — This requires some key information to be selected from a given
stimulus/resource.

For example: ‘Identify two ethical issues associated with the use of computing
technology.’

List = Give a sequence of brief answers with no explanation.

For example: ‘Two fields in a network packet are source and destination. List
three additional fields found in a network packet.’

Name = Synonymous with ‘Give’.

For example: ‘Name the component that holds instructions and data for programs
waiting to be run by the CPU.’

Select - Select the correct answer from a set of four possible answers to a
multiple-choice question.

Show - Give the steps involved in deriving a result.

For example: ‘Show the result of applying an algorithm to some given data.’
State - Synonymous with ‘Give’.

For example: ‘State what is meant by the term overflow.’
Suggest - Propose a solution in written form.

For example: ‘Sam is concerned about the environmental impact of using
computers. Suggest one possible action he could take to reduce the
environmental impact.’

Write — Compose an expression, a line of pseudo-code or an algorithm.

For example: ‘Write an expression to calculate how many different numbers can
be represented by an 8-bit binary number.’

6.3 Mark schemes

The mark schemes used to assess students’ responses in the written examination
show a model solution, but alternative and valid solutions will also be rewarded.

Answers to extended open-response questions are marked using a levels-based
mark scheme.

Clear wording makes the expectations clear for teachers and for markers.

The application of the new mark schemes will be demonstrated with marked
student answers to the SAMs questions accompanied by examiner commentary.
These will be available on the GCSE 2016 Computer Science pages of our website.

18

© Pearson Education Ltd 2015.



7. Grading structure

7. Grading structure

Ofqual has published the following guidance regarding the grading of new GCSEs.

Broadly the same proportion of students will achieve a grade 4 and above as currently
achieve a grade C and above.

Broadly the same proportion of students will achieve a grade 7 and above as currently

achieve an A and above.

For each exam, the top 20 per cent of those who get grade 7 or above will get a grade

9 - the very highest performers.

The bottom of grade 1 will be aligned with the bottom of grade G.

Grade 5 will be positioned in the top third of the marks for a current grade C and in the
bottom third of the marks for a current grade B. This will mean it will be more

demanding than the present grade C and broadly in line with what the best available

evidence tells us is the average PISA performance in countries such as Finland, Canada,

the Netherlands and Switzerland. 12

NEW GCSE GRADING STRUCTURE

9 8 7

6

2 1

U

B Broadly the same proportion of students
will achieve a grade 4 and above as
currently achieve a grade C and above.

B Broadly the same proportion of
students will achieve a grade 7 and
above as achieve an A and above.

B The bottom of grade 1 will be aligned
with the bottom of grade G.

A* A

E F G

U

CURRENT GCSE GRADING STRUCTURE

12 Ofqual diagram September 2014

© Pearson Education Ltd 2015.



8. Timeline

8. Timeline

Academic year
2015/2016

Academic year
2016/2047

Academic year
2017/2018

This diagram shows the timeline for phasing out the current GCSE and replacing it with
the new one. The last cohort of students taking the old GCSE will finish in summer 2017.
First teaching of the new GCSE starts in September 2016, with first assessments taking

place in June 2018.

20

© Pearson Education Ltd 2015.



	GTG_2016_GCSE_Computer_Science (1)
	GCSE16_COMPSCI_GSG HR

